On the Security of the Pre-Shared Key Ciphersuites of TLS

Yong Li¹, Sven Schäge², Zheng Yang¹,

Florian Kohlar¹, and Jörg Schwenk¹

¹ Horst Görtz Institute for IT Security, Bochum ² University College London

> Buenos Aires, Argentina March 28, 2014

- Motivation
- Introduction to SSL/TLS and Pre-Shared Key Ciphersuites
- Security Analysis of Pre-Shared Key Ciphersuites of TLS
 - A Security Model for Authentication via (**Symmetric**) Pre-Shared Keys
 - Security Results for Pre-Shared Key Ciphersuites of TLS
- Summary

- Motivation 🦛
- Introduction to SSL/TLS and Pre-Shared Key Ciphersuites
- Security Analysis of Pre-Shared Key Ciphersuites of TLS
 - A Security Model for Authentication via (**Symmetric**) Pre-Shared Keys
 - Security Results for Pre-Shared Key Ciphersuites of TLS
- Summary

PSK-Ciphersuites of TLS

- TLS-PSK: Authentication with Symmetric Keys (PSKs)

Authentication of resource-restricted clients like smart-cards, SIM Cards, ID Cards, ...

PSK-Ciphersuites of TLS

- Several interesting and important scenarios for TLS with pre-shared keys:
 - Authentication protocol based on TLS-PSK for EMV smart cards
 - Application of TLS-PSK in the Generic Authentication, the 3GGP mobile phone standard for UMTS and LTE
 - New electronic German ID (eID) card supports online remote authentication

Motivation

- Introduction to SSL/TLS and Pre-Shared Key Ciphersuites
- Security Analysis of Pre-Shared Key Ciphersuites of TLS
 - A Security Model for Authentication via (**Symmetric**) Pre-Shared Keys
 - Security Results for Pre-Shared Key Ciphersuites of TLS
- Summary

What is TLS?

• Transport Layer Security

Cryptographic protocols which provide secure communication over the Internet

· Confidentiality, Integrity and Authenticity

TLS in TCP/IP Model				
Client Server				
Application	http, smtp, ftp, 		http, smtp, ftp, 	Application
Transport	TLS	← TLS	TLS	Transport
	ТСР		ТСР	
Internet	IP		IP	Internet
Network	Ethernet,		Ethernet,	Network

Secure Communication Channel

TLS Sessions: Handshake + Record Layer

TLS Handshake:

- cryptographic parameters
- authentication
- session key k

TLS Record Layer:

 Data encryption and authentication using the session key k

Pre-Shared Key Ciphersuites of TLS

- 3 families of Pre-Shared Key Ciphersuites of TLS:
 - Pre-shared Keys (TLS_PSK): Session key is solely based on the secret pre-shared keys (PSK).
 - RSA Encryption (TLS_RSA_PSK): Session key is dependent on PSK and a freshly exchanged secret via RSA Encryption.
 - Diffie-Hellman key exchange (TLS_DHE_PSK): Session key is dependent on PSK and Diffie-Hellman key exchange.

- Motivation
- Introduction to SSL/TLS and Pre-Shared Key Ciphersuites
- Security Analysis of Pre-Shared Key Ciphersuites of TLS
 - A Security Model for Authentication via (Symmetric) Pre-Shared Keys
 - Security Results for Pre-Shared Key Ciphersuites of TLS
- Summary

ACCE Model for PSK- Ciphersuites of TLS

 Simple extension of the Authenticated and Confidential Channel Establishment (ACCE) model [JKSS'2012] :

- Cover scenarios with pre-shared, symmetric keys

- Model described by Two components
 - Security Model
 - Security Definition

Real World without adversary (1)

ACCE Adversary Model (1)

- An adversary is allowed to send the following queries to the honest parties:
 - Send()
 - RevealKey()
 - Corrupt()
 - Encrypt()
 - Decrypt()

Real World without adversary (2)

ACCE Security Definition (2)

The adversary breaks the protocol if

- he is successfully authenticated by a Server (or Client) (Authentication Property) or
- distinguishes **C** from random (**Ciphertext Indistinguishability**).
 - with **Perfect Forward Secrecy**:
 - retain Ciphertext Indistinguishability for protocol sessions even if the long-term secrets of the client und server are exposed after session key is created.
 - with **asymmetric** Perfect Forward Secrecy:
 - similar to that of classical perfect forward secrecy except that only the client is allowed to be corrupted

- Motivation
- Introduction to SSL/TLS and Pre-Shared Key Ciphersuites
- Security Analysis of Pre-Shared Key Ciphersuites of TLS
 - A Security Model for Authentication via (Symmetric) Pre-Shared Keys
 - Security Results for Pre-Shared Key Ciphersuites of TLS
- Summary

TLS-PSK is a Secure ACCE Protocol

Theorem:

TLS-PSK is a secure ACCE protocol without forward secrecy, if

- the PRF is a secure pseudo-random function,
- hash function H is secure collision-resistant hash function,
- The symmetric encryption is **sLHAE-secure**.

sLHAE [PRS'11]:

- Definition for symmetric ciphers
- Exactly for TLS Protocol

 $\epsilon_{\mathsf{tls}} \leq \epsilon_{\mathsf{auth}} + \epsilon_{\mathsf{enc}}$

$$= (d\ell)^2 \left(\frac{1}{2^{\lambda-1}} + 6 \cdot \epsilon_{\mathsf{PRF}} + 2 \cdot \epsilon_{\mathsf{H}} + \frac{1}{2^{\mu-1}} + 6 \cdot \epsilon_{\mathsf{StE}} \right)$$

Double Pseudo-Random Functions (DPRF)

- **DPRF**: a class of **PRF** with two input-keys
- The output of the DPRF is indistinguishable from random even if the adversary chooses one key which will be revealed

• A **DPRF** is easy to construct:

DPRF(k1; k2; m) := PRF1(k1; m)⊕PRF2(k2; m)

TLS_DHE_PSK Handshake **Cipher Suite Agreement** Phase: r_c, Supported Cipher Suites

Server has PSK |PSK|=N bytes long

Double Pseudo-Random Functions (DPRF)

- In order to prove perfect forward secrecy in TLS_DHE_PSK, we assume that
 - TLS-PRF constitutes a secure DPRF
 - The key space of the DPRF:
 - KDPRF1 : the key space of the pre-shared key **PSK**
 - KDPRF2 : the key space of the freshly generated
 Diffie-Hellman secret T
- Example: Implementation in TLS1.1:
- PRF(PSK,T; m) = HMAC_MD5'(T; m)⊕ HMAC_SHA'(PSK; m)

TLS-DHE-PSK is a Secure ACCE Protocol

Theorem:

TLS-DHE-PSK is a secure ACCE protocol **with perfect forward secrecy**, if

- DPRF_{TLS} is a double secure pseudo-random function,
- **PRF_{TLS}** is a secure pseudo-random function (PRF),
- hash function H is secure collision-resistant hash function,
- the DDH assumption holds in the Diffie-Hellman group,
- the symmetric encryption is **sLHAE-secure**.

$$\epsilon_{\mathsf{tls}} \leq (d\ell)^2 \left(\frac{1}{2^{\lambda-1}} + 3 \cdot \epsilon_{\mathsf{DPRF}} + 3 \cdot \epsilon_{\mathsf{PRF}} + 2 \cdot \epsilon_{\mathsf{H}} + \frac{1}{2^{\mu-1}} + \epsilon_{\mathsf{DDH}} + 6 \cdot \epsilon_{\mathsf{StE}} \right)$$

TLS_RSA_PSK Handshake

TLS-RSA-PSK is a Secure ACCE Protocol

Theorem:

TLS-RSA-PSK is a secure ACCE protocol **with asymmetric perfect forward secrecy**, if

- the PRF_{TLS} is a secure pseudo-random function (PRF) when keyed with the master secret
- the PRF_{TLS} is a secure double pseudo-random function (DPRF) when keyed with the pre-master secret
- hash function H is secure collision-resistant hash function,
- the PKE scheme is IND-CCA secure
- the record layer cipher is secure (sLHAE)

$$\epsilon_{\mathsf{tls}} \leq (d\ell)^2 \left(\frac{1}{2^{\lambda-1}} + \underbrace{\epsilon_{\mathsf{PKE}}}_{\mathsf{PKE}} + 3 \cdot \underbrace{\epsilon_{\mathsf{DPRF}}}_{\mathsf{OPRF}} + 3 \cdot \underbrace{\epsilon_{\mathsf{PRF}}}_{\mathsf{PRF}} + 2 \cdot \underbrace{\epsilon_{\mathsf{H}}}_{\mathsf{H}} + \frac{1}{2^{\mu-1}} + 6 \cdot \underbrace{\epsilon_{\mathsf{StE}}}_{\mathsf{StE}} \right)$$

Motivation

- Introduction to SSL/TLS and Pre-Shared Key Ciphersuites
- Security Analysis of Pre-Shared Key Ciphersuites of TLS
 - A Security Model for Authentication via (**Symmetric**) Pre-Shared Keys
 - Security Results for Pre-Shared Key Ciphersuites of TLS
- Summary 🦛

Summary

• An extension of the ACCE model [JKSS'2012] for authentication via (symmetric) pre-shared keys

-without forward secrecy,

- -with asymmetric perfect secrecy and
- -with **perfect forward secrecy**.

• Provide a security analysis of **all three TLS-PSK ciphersuites** in standard model.

Summary

